Basic Math | Basic-2 Math | Prealgebra | Workbooks | Glossary | Standards | Site Map | Help

By the end of grade three, students deepen their understanding of place value and their understanding of and skill with addition, subtraction, multiplication, and division of whole numbers. Students estimate, measure, and describe objects in space. They use patterns to help solve problems. They represent number relationships and conduct simple probability experiments.

1.0 Students understand the place value of whole numbers:

1.1 Count, read, and write whole numbers to 10,000.
- Numbers 1-10,000 Card Quiz

1.2 Compare and order whole numbers to 10,000.
- "More or Less" 1-10,000

1.3 Identify the place value for each digit in numbers to 10,000.

1.4 Round off numbers to 10,000 to the nearest ten, hundred, and thousand.
- Rounding to the Nearest Thousand
- Rounding Thousands Memory Game
- Rounding to the Nearest Hundred
- Rounding Hundreds Memory Game

1.5 Use expanded notation to represent numbers (e.g., 3,206 = 3,000 + 200 + 6).

2.0 Students calculate and solve problems involving addition, subtraction, multiplication, and division:

2.1 Find the sum or difference of two whole numbers between 0 and 10,000.
- Four-Digit Addition (No Carrying)
- Four-Digit Addition (Carrying)
- Four-Digit Number Quiz (No Borrowing)
- Four-Digit Number Quiz (Borrowing)

2.2 Memorize to automaticity the multiplication table for numbers between 1 and 10.
- 4, 6, and 8 Multiplication Quiz
- 3, 7, and 9 Multiplication Quiz
- 2, 5, and 10 Multiplication Quiz

2.3 Use the inverse relationship of multiplication and division to compute and check results.

2.4 Solve simple problems involving multiplication of multidigit numbers by one-digit numbers (3,671 x 3 = __).
- One and Two-Digit (No Carrying-H)
- One and Two-Digit (No Carrying-V)
- "More or Less" 1 and 2-Digit (No Carrying)
- One and Two-Digit (Carrying)
- "More or Less" 1 and 2-Digit (Carrying)
- One and Three-Digit (Carrying)
- One and Four-Digit (No Carrying)

2.5 Solve division problems in which a multidigit number is evenly divided by a one-digit number (135 ÷ 5 = __).
- Single-Digit (No Remainder)
- One and Two-Digit (No Remainder-LT 10)
- One and Two-Digit (No Remainder-H)
- One and Two-Digit (No Remainder)

2.6 Understand the special properties of 0 and 1 in multiplication and division.

2.7 Determine the unit cost when given the total cost and number of units.

2.8 Solve problems that require two or more of the skills mentioned above.

3.0 Students understand the relationship between whole numbers, simple fractions, and decimals:

3.1 Compare fractions represented by drawings or concrete materials to show equivalency and to add and subtract simple fractions in context (e.g., 1/2 of a pizza is the same amount as 2/4 of another pizza that is the same size; show that 3/8 is larger than 1/4).
- Identifying Equivalent Fractions (Level I)
- Identifying Equivalent Fractions (Level II)
- "More or Less" Fractions (Level I)
- "More or Less" Fractions (Level II)

3.2 Add and subtract simple fractions (e.g., determine that 1/8 + 3/8 is the same as 1/2).

3.3 Solve problems involving addition, subtraction, multiplication, and division of money amounts in decimal notation and multiply and divide money amounts in decimal notation by using whole-number multipliers and divisors.
- Adding Numbers with Hundredth Values
- Subtracting Numbers with Hundredth Values
- Adding Amounts Under Ten Dollars
- Subtracting Amounts Under Ten Dollars

3.4 Know and understand that fractions and decimals are two different representations of the same concept (e.g., 50 cents is 1/2 of a dollar, 75 cents is 3/4 of a dollar).

1.0 Students select appropriate symbols, operations, and properties to represent, describe, simplify, and solve simple number relationships:

1.1 Represent relationships of quantities in the form of mathematical expressions, equations, or inequalities.

1.2 Solve problems involving numeric equations or inequalities.

1.3 Select appropriate operational and relational symbols to make an expression true (e.g., if 4 __ 3 = 12, what operational symbol goes in the blank?).

1.4 Express simple unit conversions in symbolic form (e.g., __ inches = __ feet x 12).

1.5 Recognize and use the commutative and associative properties of multiplication (e.g., if 5 x 7 = 35, then what is 7 x 5? and if 5 x 7 x 3 = 105, then what is 7 x 3 x 5?).

2.0 Students represent simple functional relationships:

2.1 Solve simple problems involving a functional relationship between two quantities (e.g., find the total cost of multiple items given the cost per unit).

2.2 Extend and recognize a linear pattern by its rules (e.g., the number of legs on a given number of horses may be calculated by counting by 4s or by multiplying the number of horses by 4).

1.0 Students choose and use appropriate units and measurement tools to quantify the properties of objects:

1.1 Choose the appropriate tools and units (metric and U.S.) and estimate and measure the length, liquid volume, and weight/mass of given objects.

1.2 Estimate or determine the area and volume of solid figures by covering them with squares or by counting the number of cubes that would fill them.

1.3 Find the perimeter of a polygon with integer sides.

1.4 Carry out simple unit conversions within a system of measurement (e.g., centimeters and meters, hours and minutes).
- Converting Days to Weeks
- Converting Hours to Days
- Converting Minutes to Months

2.0 Students describe and compare the attributes of plane and solid geometric figures and use their understanding to show relationships and solve problems:

2.1 Identify, describe, and classify polygons (including pentagons, hexagons, and octagons).

2.2 Identify attributes of triangles (e.g., two equal sides for the isosceles triangle, three equal sides for the equilateral triangle, right angle for the right triangle).

2.3 Identify attributes of quadrilaterals (e.g., parallel sides for the parallelogram, right angles for the rectangle, equal sides and right angles for the square).

2.4 Identify right angles in geometric figures or in appropriate objects and determine whether other angles are greater or less than a right angle.

2.5 Identify, describe, and classify common three-dimensional geometric objects (e.g., cube, rectangular solid, sphere, prism, pyramid, cone, cylinder).
- 3-Dimensional Shape Memory Game
- 3-Dimensional Shape Card Quiz

2.6 Identify common solid objects that are the components needed to make a more complex solid object.

1.0 Students conduct simple probability experiments by determining the number of possible outcomes and make simple predictions:

1.1 Identify whether common events are certain, likely, unlikely, or improbable.

1.2 Record the possible outcomes for a simple event (e.g., tossing a coin) and systematically keep track of the outcomes when the event is repeated many times.

1.3 Summarize and display the results of probability experiments in a clear and organized way (e.g., use a bar graph or a line plot).

1.4 Use the results of probability experiments to predict future events (e.g., use a line plot to predict the temperature forecast for the next day).

1.0 Students make decisions about how to approach problems:

1.1 Analyze problems by identifying relationships, distinguishing relevant from irrelevant information, sequencing and prioritizing information, and observing patterns.

1.2 Determine when and how to break a problem into simpler parts.

2.0 Students use strategies, skills, and concepts in finding solutions:

2.1 Use estimation to verify the reasonableness of calculated results.

2.2 Apply strategies and results from simpler problems to more complex problems.

2.3 Use a variety of methods, such as words, numbers, symbols, charts, graphs, tables, diagrams, and models, to explain mathematical reasoning.

2.4 Express the solution clearly and logically by using the appropriate mathematical notation and terms and clear language; support solutions with evidence in both verbal and symbolic work.

2.5 Indicate the relative advantages of exact and approximate solutions to problems and give answers to a specified degree of accuracy.

2.6 Make precise calculations and check the validity of the results from the context of the problem.

3.0 Students move beyond a particular problem by generalizing to other situations:

3.1 Evaluate the reasonableness of the solution in the context of the original situation.

3.2 Note the method of deriving the solution and demonstrate a conceptual understanding of the derivation by solving similar problems.

3.3 Develop generalizations of the results obtained and apply them in other circumstances.

Return to Top of Page

Site Tools and Help Topics
- Home Page
- Glossary
- Content Standards
--   Kindergarten
--   1st Grade
--   2nd Grade
>>   3rd Grade
--   4th Grade
--   5th Grade
--   6th Grade
--   7th Grade
- Site Map
- Site Help

* The custom search only looks at Rader's sites.

Link to Link to Link to Link to Link to Link to Rader Sites Side Navigation

[Button: Go to Help Page] Go for site help or a list of mathematics topics at the site map!
©copyright 2004-2013 Andrew Rader Studios, All rights reserved.

** Andrew Rader Studios does not monitor or review the content available at these web sites. They are paid advertisements and neither partners nor recommended web sites.